Package: FRESHD 1.0
FRESHD: Fast Robust Extraction of Signals from Heterogenous Data
Procedure for solving the maximin problem for identical design across heterogeneous data groups. Particularly efficient when the design matrix is either orthogonal or has tensor structure. Orthogonal wavelets can be specified for 1d, 2d or 3d data simply by name. For tensor structured design the tensor components (two or three) may be supplied. The package also provides an efficient implementation of the generic magging estimator.
Authors:
FRESHD_1.0.tar.gz
FRESHD_1.0.zip(r-4.5)FRESHD_1.0.zip(r-4.4)FRESHD_1.0.zip(r-4.3)
FRESHD_1.0.tgz(r-4.4-x86_64)FRESHD_1.0.tgz(r-4.4-arm64)FRESHD_1.0.tgz(r-4.3-x86_64)FRESHD_1.0.tgz(r-4.3-arm64)
FRESHD_1.0.tar.gz(r-4.5-noble)FRESHD_1.0.tar.gz(r-4.4-noble)
FRESHD_1.0.tgz(r-4.4-emscripten)FRESHD_1.0.tgz(r-4.3-emscripten)
FRESHD.pdf |FRESHD.html✨
FRESHD/json (API)
# Install 'FRESHD' in R: |
install.packages('FRESHD', repos = c('https://adam-lund.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/adam-lund/freshd/issues
Last updated 3 years agofrom:d306fb69e7. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win-x86_64 | NOTE | Nov 05 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 05 2024 |
R-4.4-win-x86_64 | NOTE | Nov 05 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 05 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 05 2024 |
R-4.3-win-x86_64 | NOTE | Nov 05 2024 |
R-4.3-mac-x86_64 | NOTE | Nov 05 2024 |
R-4.3-mac-aarch64 | NOTE | Nov 05 2024 |
Dependencies:glamlassoRcppRcppArmadilloRcppEigen
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Inverse discrete wavelet transform | iwt |
Maximin Aggregation | magging |
Maximin signal estimation | FRESHD maximin |
Make Prediction From a FRESHD Object | FRESHD.predict FRESHD_predict predict.FRESHD |
Print Function for objects of Class FRESHD | print.FRESHD |
The Rotated H-transform of a 3d Array by a Matrix | FRESHD_RH H RH Rotate |
Discrete wavelet transform | wt |