Package: SMME 1.1.1
SMME: Soft Maximin Estimation for Large Scale Heterogeneous Data
Efficient procedure for solving the soft maximin problem for large scale heterogeneous data, see Lund, Mogensen and Hansen (2022) <doi:10.1111/sjos.12580>. Currently Lasso and SCAD penalized estimation is implemented. Note this package subsumes and replaces the SMMA package.
Authors:
SMME_1.1.1.tar.gz
SMME_1.1.1.zip(r-4.5)SMME_1.1.1.zip(r-4.4)SMME_1.1.1.zip(r-4.3)
SMME_1.1.1.tgz(r-4.4-x86_64)SMME_1.1.1.tgz(r-4.4-arm64)SMME_1.1.1.tgz(r-4.3-x86_64)SMME_1.1.1.tgz(r-4.3-arm64)
SMME_1.1.1.tar.gz(r-4.5-noble)SMME_1.1.1.tar.gz(r-4.4-noble)
SMME_1.1.1.tgz(r-4.4-emscripten)SMME_1.1.1.tgz(r-4.3-emscripten)
SMME.pdf |SMME.html✨
SMME/json (API)
# Install 'SMME' in R: |
install.packages('SMME', repos = c('https://adam-lund.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:2d6fd72cd3. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-win-x86_64 | NOTE | Nov 01 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 01 2024 |
R-4.4-win-x86_64 | NOTE | Nov 01 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 01 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 01 2024 |
R-4.3-win-x86_64 | NOTE | Nov 01 2024 |
R-4.3-mac-x86_64 | NOTE | Nov 01 2024 |
R-4.3-mac-aarch64 | NOTE | Nov 01 2024 |
Exports:iwtpredict.SMMERHsoftmaximinwt
Dependencies:RcppRcppArmadillo
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Inverse discrete wavelet transform | iwt |
Make Prediction From a SMME Object | predict.SMME SMME.predict SMME_predict |
Print Function for objects of Class SMME | print.SMME |
The Rotated H-transform of a 3d Array by a Matrix | H RH Rotate SMME_RH |
Soft Maximin Estimation for Large Scale Heterogenous Data | pga SMME softmaximin |
Discrete wavelet transform | wt |