
Package: glamlasso (via r-universe)
August 30, 2024

Type Package

Title Penalization in Large Scale Generalized Linear Array Models

Version 3.0.1

Date 2021-05-10

Author Adam Lund

Maintainer Adam Lund <adam.lund@math.ku.dk>

Description Efficient design matrix free lasso penalized estimation in
large scale 2 and 3-dimensional generalized linear array model
framework. The procedure is based on the gdpg algorithm from
Lund et al. (2017) <doi:10.1080/10618600.2017.1279548>.
Currently Lasso or Smoothly Clipped Absolute Deviation (SCAD)
penalized estimation is possible for the following models: The
Gaussian model with identity link, the Binomial model with
logit link, the Poisson model with log link and the Gamma model
with log link. It is also possible to include a component in
the model with non-tensor design e.g an intercept. Also
provided are functions, glamlassoRR() and glamlassoS(), fitting
special cases of GLAMs.

License GPL-3

Imports Rcpp (>= 0.11.2)

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.1.1

Repository https://adam-lund.r-universe.dev

RemoteUrl https://github.com/adam-lund/glamlasso

RemoteRef HEAD

RemoteSha f696906bbc4d472806b43eaf1a5977c0ad618db8

Contents
glamlasso . 2
glamlassoRR . 7

1

https://doi.org/10.1080/10618600.2017.1279548

2 glamlasso

glamlassoS . 12
objective . 16
predict.glamlasso . 17
print.glamlasso . 18
RH . 19

Index 21

glamlasso Penalization in Large Scale Generalized Linear Array Models

Description

Efficient design matrix free procedure for fitting large scale penalized 2 or 3-dimensional gener-
alized linear array models (GLAM). It is also possible to fit an additional non-tensor structured
component - e.g an intercept - however this can reduce the computational efficiency of the pro-
cedure substantially. Currently the LASSO penalty and the SCAD penalty are both implemented.
Furthermore, the Gaussian model with identity link, the Binomial model with logit link, the Poisson
model with log link and the Gamma model with log link is currently implemented. The underlying
algorithm combines gradient descent and proximal gradient (gdpg algorithm), see Lund et al., 2017.

Usage

glamlasso(X,
Y,
Z = NULL,
family = "gaussian",
penalty = "lasso",
intercept = FALSE,
weights = NULL,
betainit = NULL,
alphainit = NULL,
nlambda = 100,
lambdaminratio = 1e-04,
lambda = NULL,
penaltyfactor = NULL,
penaltyfactoralpha = NULL,
reltolinner = 1e-07,
reltolouter = 1e-04,
maxiter = 15000,
steps = 1,
maxiterinner = 3000,
maxiterouter = 25,
btinnermax = 100,
btoutermax = 100,
iwls = "exact",
nu = 1)

glamlasso 3

Arguments

X A list containing the tensor components (2 or 3) of the tensor design matrix.
These are matrices of sizes ni × pi.

Y The response values, an array of size n1 × · · · × nd. For option family =
"binomial" this array must contain the proportion of successes and the number
of trials is then specified as weights (see below).

Z The non tensor structrured part of the design matrix. A matrix of size n1 · · ·nd×
q. Is set to NULL as default.

family A string specifying the model family (essentially the response distribution). Pos-
sible values are "gaussian", "binomial", "poisson", "gamma".

penalty A string specifying the penalty. Possible values are "lasso", "scad".

intercept Logical variable indicating if the model includes an intercept. When intercept
= TRUE the first coulmn in the non-tensor design component Z is all 1s. Default
is FALSE.

weights Observation weights, an array of size n1 × · · · × nd. For option family =
"binomial" this array must contain the number of trials and must be provided.

betainit The initial parameter values. Default is NULL in which case all parameters are
initialized at zero.

alphainit A q× 1 vector containing the initial parameter values for the non-tensor param-
eter. Default is NULL in which case all parameters are initialized at 0.

nlambda The number of lambda values.

lambdaminratio The smallest value for lambda, given as a fraction of λmax; the (data derived)
smallest value for which all coefficients are zero.

lambda The sequence of penalty parameters for the regularization path.

penaltyfactor An array of size p1 × · · · × pd. Is multiplied with each element in lambda to
allow differential shrinkage on the coefficients.

penaltyfactoralpha

A q × 1 vector multiplied with each element in lambda to allow differential
shrinkage on the non-tensor coefficients.

reltolinner The convergence tolerance for the inner loop

reltolouter The convergence tolerance for the outer loop.

maxiter The maximum number of inner iterations allowed for each lambda value, when
summing over all outer iterations for said lambda.

steps The number of steps used in the multi-step adaptive lasso algorithm for non-
convex penalties. Automatically set to 1 when penalty = "lasso".

maxiterinner The maximum number of inner iterations allowed for each outer iteration.

maxiterouter The maximum number of outer iterations allowed for each lambda.

btinnermax Maximum number of backtracking steps allowed in each inner iteration. Default
is btinnermax = 100.

btoutermax Maximum number of backtracking steps allowed in each outer iteration. Default
is btoutermax = 100.

4 glamlasso

iwls A string indicating whether to use the exact iwls weight matrix or use a kro-
necker structured approximation to it.

nu A number between 0 and 1 that controls the step size δ in the proximal algo-
rithm (inner loop) by scaling the upper bound L̂h on the Lipschitz constant Lh

(see Lund et al., 2017). For nu = 1 backtracking never occurs and the proximal
step size is always δ = 1/L̂h. For nu = 0 backtracking always occurs and the
proximal step size is initially δ = 1. For 0 < nu < 1 the proximal step size is ini-
tially δ = 1/(νL̂h) and backtracking is only employed if the objective function
does not decrease. A nu close to 0 gives large step sizes and presumably more
backtracking in the inner loop. The default is nu = 1 and the option is only used
if iwls = "exact".

Details

Consider a (two component) generalized linear model (GLM)

g(µ) = Xβ + Zα =: η.

Here g is a link function, µ is a n× 1 vector containing the mean of the response variable Y , Z is a
n× q matrix and X a n× p matrix with tensor structure

X = Xd ⊗ · · · ⊗X1,

where X1, . . . , Xd are the marginal ni × pi design matrices (tensor factors) such that p = p1 · · · pd
and n = n1 · · ·nd. Then β is the p × 1 parameter associated with the tensor component X and α
the q × 1 parameter associated with the non-tensor component Z, e.g. the intercept.

Using the generalized linear array model (GLAM) framework the model equation is

g(µ) = vec(ρ(Xd, ρ(Xd−1, . . . , ρ(X1, B)))) + Zα,

where ρ is the so called rotated H-transform and B is the array version of β. See Currie et al., 2006
for more details.

The log-likelihood is a function of θ := (β, α) through the linear predictor η i.e. θ 7→ l(η(θ)). In
the usual exponential family framework this can be expressed as

l(η(θ)) =

n∑
i=1

ai
yiϑ(ηi(θ))− b(ϑ(ηi(θ)))

ψ
+ c(yi, ψ)

where ϑ, the canonical parameter map, is linked to the linear predictor via the identity η(θ) =
g(b′(ϑ)) with b the cumulant function. Here ai ≥ 0, i = 1, . . . , n are observation weights and ψ is
the dispersion parameter.

For d = 3 or d = 2, using only the marginal matrices X1, X2, . . ., the function glamlasso solves
the penalized estimation problem

min
θ

−l(η(θ)) + λJ(θ),

for J either the LASSO or SCAD penalty function, in the GLAM setup for a sequence of penalty
parameters λ > 0. The underlying algorithm is based on an outer gradient descent loop and an
inner proximal gradient based loop. We note that if J is not convex, as with the SCAD penalty, we

glamlasso 5

use the multiple step adaptive lasso procedure to loop over the inner proximal algorithm, see Lund
et al., 2017 for more details.

Note that the package is optimized towards solving the estimation problem, for α = 0. For α ̸= 0
the user incurs a potentially substantial computational cost. Especially it is not advisable to inlcude
a very large non-tensor component in the model (large q) and even adding an intecept to the model
(q = 1) will result in a reduction of computational efficiency.

Value

An object with S3 Class ’glamlasso’.

spec A string indicating the GLAM dimension (d = 2, 3), the model family and the
penalty.

beta A p1 · · · pd× nlambda matrix containing the estimates of the parameters for the
tensor structured part of the model (beta) for each lambda-value.

alpha A q× nlambda matrix containing the estimates of the parameters for the non
tensor structured part of the model alpha for each lambda-value. If intercept
= TRUE the first row contains the intercept estimate for each lambda-value.

lambda A vector containing the sequence of penalty values used in the estimation pro-
cedure.

df The number of nonzero coefficients for each value of lambda.

dimcoef A vector giving the dimension of the model coefficient array β.

dimobs A vector giving the dimension of the observation (response) array Y.

Iter A list with 4 items: bt_iter_inner is total number of backtracking steps per-
formed in the inner loop, bt_enter_inner is the number of times the backtrack-
ing is initiated in the inner loop, bt_iter_outer is total number of backtracking
steps performed in the outer loop, and iter_mat is a nlambda× maxiterouter
matrix containing the number of inner iterations for each lambda value and each
outer iteration and iter is total number of iterations i.e. sum(Iter).

Author(s)

Adam Lund

Maintainer: Adam Lund, <adam.lund@math.ku.dk>

References

Lund, A., M. Vincent, and N. R. Hansen (2017). Penalized estimation in large-scale generalized
linear array models. Journal of Computational and Graphical Statistics, 26, 3, 709-724. url =
https://doi.org/10.1080/10618600.2017.1279548.

Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized linear array models with ap-
plications to multidimensional smoothing. Journal of the Royal Statistical Society. Series B. 68,
259-280. url = http://dx.doi.org/10.1111/j.1467-9868.2006.00543.x.

6 glamlasso

Examples

##size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 12; p2 <- 6; p3 <- 4

##marginal design matrices (tensor components)
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
X <- list(X1, X2, X3)

##############gaussian example
Beta <- array(rnorm(p1 * p2 * p3) * rbinom(p1 * p2 * p3, 1, 0.1), c(p1 , p2, p3))
Mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rnorm(n1 * n2 * n3, Mu), c(n1, n2, n3))

system.time(fit <- glamlasso(X, Y))

modelno <- length(fit$lambda)
plot(c(Beta), type = "h", ylim = range(Beta, fit$coef[, modelno]))
points(c(Beta))
lines(fit$coef[, modelno], col = "red", type = "h")

###with non tensor design component Z
q <- 5
alpha <- matrix(rnorm(q)) * rbinom(q, 1, 0.5)
Z <- matrix(rnorm(n1 * n2 * n3 * q), n1 * n2 *n3, q)
Y <- array(rnorm(n1 * n2 * n3, Mu + array(Z %*% alpha, c(n1, n2, n3))), c(n1, n2, n3))
system.time(fit <- glamlasso(X, Y, Z))

modelno <- length(fit$lambda)
oldmfrow <- par()$mfrow
par(mfrow = c(1, 2))
plot(c(Beta), type = "l", ylim = range(Beta, fit$coef[, modelno]))
points(c(Beta))
lines(fit$coef[, modelno], col = "red")
plot(c(alpha), type = "h", ylim = range(Beta, fit$alpha[, modelno]))
points(c(alpha))
lines(fit$alpha[, modelno], col = "red", type = "h")
par(mfrow = oldmfrow)

################ poisson example
Beta <- array(rnorm(p1 * p2 * p3, 0, 0.1) * rbinom(p1 * p2 * p3, 1, 0.1), c(p1 , p2, p3))
Mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rpois(n1 * n2 * n3, exp(Mu)), dim = c(n1, n2, n3))
system.time(fit <- glamlasso(X, Y, family = "poisson", nu = 0.1))

modelno <- length(fit$lambda)
plot(c(Beta), type = "h", ylim = range(Beta, fit$coef[, modelno]))
points(c(Beta))
lines(fit$coef[, modelno], col = "red", type = "h")

###with non tensor design component Z

glamlassoRR 7

q <- 5
alpha <- matrix(rnorm(q)) * rbinom(q, 1, 0.5)
Z <- matrix(rnorm(n1 * n2 * n3 * q), n1 * n2 *n3, q)
Y <- array(rpois(n1 * n2 * n3, exp(Mu + array(Z %*% alpha, c(n1, n2, n3)))), dim = c(n1, n2, n3))
system.time(fit <- glamlasso(X, Y, Z, family = "poisson", nu = 0.1))

modelno <- length(fit$lambda)
oldmfrow <- par()$mfrow
par(mfrow = c(1, 2))
plot(c(Beta), type = "l", ylim = range(Beta, fit$coef[, modelno]))
points(c(Beta))
lines(fit$coef[, modelno], col = "red")
plot(c(alpha), type = "h", ylim = range(Beta, fit$alpha[, modelno]))
points(c(alpha))
lines(fit$alpha[, modelno], col = "red", type = "h")
par(mfrow = oldmfrow)

glamlassoRR Penalized reduced rank regression in a GLAM

Description

Efficient design matrix free procedure for fitting large scale penalized reduced rank regressions in a
3-dimensional generalized linear array model. To obtain a factorization of the parameter array, the
glamlassoRR function performes a block relaxation scheme within the gdpg algorithm, see Lund
and Hansen, 2018.

Usage

glamlassoRR(X,
Y,
Z = NULL,
family = "gaussian",
penalty = "lasso",
intercept = FALSE,
weights = NULL,
betainit = NULL,
alphainit = NULL,
nlambda = 100,
lambdaminratio = 1e-04,
lambda = NULL,
penaltyfactor = NULL,
penaltyfactoralpha = NULL,
reltolinner = 1e-07,
reltolouter = 1e-04,
reltolalt = 1e-04,
maxiter = 15000,

8 glamlassoRR

steps = 1,
maxiterinner = 3000,
maxiterouter = 25,
maxalt = 10,
btinnermax = 100,
btoutermax = 100,
iwls = "exact",
nu = 1)

Arguments

X A list containing the 3 tensor components of the tensor design matrix. These are
matrices of sizes ni × pi.

Y The response values, an array of size n1 × n2 × n3. For option family =
"binomial" this array must contain the proportion of successes and the number
of trials is then specified as weights (see below).

Z The non tensor structrured part of the design matrix. A matrix of size n1n2n3×
q. Is set to NULL as default.

family A string specifying the model family (essentially the response distribution). Pos-
sible values are "gaussian", "binomial", "poisson", "gamma".

penalty A string specifying the penalty. Possible values are "lasso", "scad".

intercept Logical variable indicating if the model includes an intercept. When intercept
= TRUE the first coulmn in the non-tensor design component Z is all 1s. Default
is FALSE.

weights Observation weights, an array of size n1 × · · · × nd. For option family =
"binomial" this array must contain the number of trials and must be provided.

betainit A list (length 2) containing the initial parameter values for each of the parameter
factors. Default is NULL in which case all parameters are initialized at 0.01.

alphainit A q× 1 vector containing the initial parameter values for the non-tensor param-
eter. Default is NULL in which case all parameters are initialized at 0.

nlambda The number of lambda values.

lambdaminratio The smallest value for lambda, given as a fraction of λmax; the (data derived)
smallest value for which all coefficients are zero.

lambda The sequence of penalty parameters for the regularization path.

penaltyfactor A list of length two containing an array of size p1 × p2 and a p3 × 1 vector.
Multiplied with each element in lambda to allow differential shrinkage on the
(tensor) coefficients blocks.

penaltyfactoralpha

A q × 1 vector multiplied with each element in lambda to allow differential
shrinkage on the non-tensor coefficients.

reltolinner The convergence tolerance for the inner loop

reltolouter The convergence tolerance for the outer loop.

reltolalt The convergence tolerance for the alternation loop over the two parameter blocks.

glamlassoRR 9

maxiter The maximum number of inner iterations allowed for each lambda value, when
summing over all outer iterations for said lambda.

steps The number of steps used in the multi-step adaptive lasso algorithm for non-
convex penalties. Automatically set to 1 when penalty = "lasso".

maxiterinner The maximum number of inner iterations allowed for each outer iteration.

maxiterouter The maximum number of outer iterations allowed for each lambda.

maxalt The maximum number of alternations over parameter blocks.

btinnermax Maximum number of backtracking steps allowed in each inner iteration. Default
is btinnermax = 100.

btoutermax Maximum number of backtracking steps allowed in each outer iteration. Default
is btoutermax = 100.

iwls A string indicating whether to use the exact iwls weight matrix or use a tensor
structured approximation to it.

nu A number between 0 and 1 that controls the step size δ in the proximal algo-
rithm (inner loop) by scaling the upper bound L̂h on the Lipschitz constant Lh

(see Lund et al., 2017). For nu = 1 backtracking never occurs and the proximal
step size is always δ = 1/L̂h. For nu = 0 backtracking always occurs and the
proximal step size is initially δ = 1. For 0 < nu < 1 the proximal step size is ini-
tially δ = 1/(νL̂h) and backtracking is only employed if the objective function
does not decrease. A nu close to 0 gives large step sizes and presumably more
backtracking in the inner loop. The default is nu = 1 and the option is only used
if iwls = "exact".

Details

Given the setting from glamlasso we place a reduced rank restriction on the p1×p2×p3 parameter
array B given by

B = (Bi,j,k)i,j,k = (γkκi,j)i,j,k, γk, κi,j ∈ R.
The glamlassoRR function solves the PMLE problem by combining a block relaxation scheme
with the gdpg algorithm. This scheme alternates between optimizing over the first parameter block
κ = (κi,j)i,j and the second block γ = (γk)k while fixing the second resp. first block.

Note that the individual parameter blocks are only identified up to a multiplicative constant. Also
note that the algorithm is sensitive to inital values betainit which can prevent convergence.

Value

An object with S3 Class "glamlasso".

spec A string indicating the model family and the penalty.

coef12 A p1p2× nlambda matrix containing the estimates of the first model coefficient
factor (κ) for each lambda-value.

coef3 A p3× nlambda matrix containing the estimates of the second model coefficient
factor (γ) for each lambda-value.

alpha A q× nlambda matrix containing the estimates of the parameters for the non ten-
sor structured part of the model (alpha) for each lambda-value. If intercept =
TRUE the first row contains the intercept estimate for each lambda-value.

10 glamlassoRR

lambda A vector containing the sequence of penalty values used in the estimation pro-
cedure.

df The number of nonzero coefficients for each value of lambda.

dimcoef A vector giving the dimension of the model coefficient array β.

dimobs A vector giving the dimension of the observation (response) array Y.

Iter A list with 4 items: bt_iter_inner is total number of backtracking steps per-
formed in the inner loop, bt_enter_inner is the number of times the backtrack-
ing is initiated in the inner loop, bt_iter_outer is total number of backtracking
steps performed in the outer loop, and iter_mat is a nlambda× maxiterouter
matrix containing the number of inner iterations for each lambda value and each
outer iteration and iter is total number of iterations i.e. sum(Iter).

Author(s)

Adam Lund

Maintainer: Adam Lund, <adam.lund@math.ku.dk>

References

Lund, A., M. Vincent, and N. R. Hansen (2017). Penalized estimation in large-scale generalized
linear array models. Journal of Computational and Graphical Statistics, 26, 3, 709-724. url =
https://doi.org/10.1080/10618600.2017.1279548.

Lund, A. and N. R. Hansen (2019). Sparse Network Estimation for Dynamical Spatio-temporal Ar-
ray Models. Journal of Multivariate Analysis, 174. url = https://doi.org/10.1016/j.jmva.2019.104532.

Examples

##size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 12; p2 <- 6; p3 <- 4

##marginal design matrices (tensor components)
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
X <- list(X1, X2, X3)
Beta12 <- matrix(rnorm(p1 * p2), p1, p2) * matrix(rbinom(p1 * p2, 1, 0.5), p1, p2)
Beta3 <- matrix(rnorm(p3) * rbinom(p3, 1, 0.5), p3, 1)
Beta <- outer(Beta12, c(Beta3))
Mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rnorm(n1 * n2 * n3, Mu), dim = c(n1, n2, n3))

system.time(fit <- glamlassoRR(X, Y))

modelno <- length(fit$lambda)
oldmfrow <- par()$mfrow
par(mfrow = c(1, 3))
plot(c(Beta), type = "h")
points(c(Beta))
lines(c(outer(fit$coef12[, modelno], c(fit$coef3[, modelno]))), col = "red", type = "h")

glamlassoRR 11

plot(c(Beta12), ylim = range(Beta12, fit$coef12[, modelno]), type = "h")
points(c(Beta12))
lines(fit$coef12[, modelno], col = "red", type = "h")
plot(c(Beta3), ylim = range(Beta3, fit$coef3[, modelno]), type = "h")
points(c(Beta3))
lines(fit$coef3[, modelno], col = "red", type = "h")
par(mfrow = oldmfrow)

###with non tensor design component Z
q <- 5
alpha <- matrix(rnorm(q)) * rbinom(q, 1, 0.5)
Z <- matrix(rnorm(n1 * n2 * n3 * q), n1 * n2 * n3, q)
Y <- array(rnorm(n1 * n2 * n3, Mu + array(Z %*% alpha, c(n1, n2, n3))), c(n1, n2, n3))
system.time(fit <- glamlassoRR(X, Y, Z))

modelno <- length(fit$lambda)
oldmfrow <- par()$mfrow
par(mfrow = c(2, 2))
plot(c(Beta), type = "h")
points(c(Beta))
lines(c(outer(fit$coef12[, modelno], c(fit$coef3[, modelno]))), col = "red", type = "h")
plot(c(Beta12), ylim = range(Beta12,fit$coef12[, modelno]), type = "h")
points(c(Beta12))
lines(fit$coef12[, modelno], col = "red", type = "h")
plot(c(Beta3), ylim = range(Beta3, fit$coef3[, modelno]), type = "h")
points(c(Beta3))
lines(fit$coef3[, modelno], col = "red", type = "h")
plot(c(alpha), ylim = range(alpha, fit$alpha[, modelno]), type = "h")
points(c(alpha))
lines(fit$alpha[, modelno], col = "red", type = "h")
par(mfrow = oldmfrow)

################ poisson example
set.seed(7954) ## for this seed the algorithm fails to converge for default initial values!!
set.seed(42)
##size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 12; p2 <- 6; p3 <- 4

##marginal design matrices (tensor components)
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
X <- list(X1, X2, X3)

Beta12 <- matrix(rnorm(p1 * p2, 0, 0.5) * rbinom(p1 * p2, 1, 0.1), p1, p2)
Beta3 <- matrix(rnorm(p3, 0, 0.5) * rbinom(p3, 1, 0.5), p3, 1)
Beta <- outer(Beta12, c(Beta3))
Mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rpois(n1 * n2 * n3, exp(Mu)), dim = c(n1, n2, n3))
system.time(fit <- glamlassoRR(X, Y ,family = "poisson"))
modelno <- length(fit$lambda)
oldmfrow <- par()$mfrow
par(mfrow = c(1, 3))

12 glamlassoS

plot(c(Beta), type = "h")
points(c(Beta))
lines(c(outer(fit$coef12[, modelno], c(fit$coef3[, modelno]))), col = "red", type = "h")
plot(c(Beta12), ylim = range(Beta12, fit$coef12[, modelno]), type = "h")
points(c(Beta12))
lines(fit$coef12[, modelno], col = "red", type = "h")
plot(c(Beta3), ylim = range(Beta3, fit$coef3[, modelno]), type = "h")
points(c(Beta3))
lines(fit$coef3[, modelno], col = "red", type = "h")
par(mfrow = oldmfrow)

glamlassoS Penalization in Large Scale Generalized Linear Array Models

Description

Efficient design matrix free procedure for fitting a special case of a generalized linear model with
array structured response and partially tensor structured covariates. See Lund and Hansen, 2019 for
an application of this special purpose function.

Usage

glamlassoS(X,
Y,
V,
Z = NULL,
family = "gaussian",
penalty = "lasso",
intercept = FALSE,
weights = NULL,
betainit = NULL,
alphainit = NULL,
nlambda = 100,
lambdaminratio = 1e-04,
lambda = NULL,
penaltyfactor = NULL,
penaltyfactoralpha = NULL,
reltolinner = 1e-07,
reltolouter = 1e-04,
maxiter = 15000,
steps = 1,
maxiterinner = 3000,
maxiterouter = 25,
btinnermax = 100,
btoutermax = 100,
iwls = "exact",
nu = 1)

glamlassoS 13

Arguments

X A list containing the tensor components (2 or 3) of the tensor design matrix.
These are matrices of sizes ni × pi.

Y The response values, an array of size n1 × · · · × nd. For option family =
"binomial" this array must contain the proportion of successes and the number
of trials is then specified as weights (see below).

V The weight values, an array of size n1 × · · · × nd.

Z The non tensor structrured part of the design matrix. A matrix of size n1 · · ·nd×
q. Is set to NULL as default.

family A string specifying the model family (essentially the response distribution). Pos-
sible values are "gaussian", "binomial", "poisson", "gamma".

penalty A string specifying the penalty. Possible values are "lasso", "scad".

intercept Logical variable indicating if the model includes an intercept. When intercept
= TRUE the first coulmn in the non-tensor design component Z is all 1s. Default
is FALSE.

weights Observation weights, an array of size n1 × · · · × nd. For option family =
"binomial" this array must contain the number of trials and must be provided.

betainit The initial parameter values. Default is NULL in which case all parameters are
initialized at zero.

alphainit A q× 1 vector containing the initial parameter values for the non-tensor param-
eter. Default is NULL in which case all parameters are initialized at 0.

nlambda The number of lambda values.

lambdaminratio The smallest value for lambda, given as a fraction of λmax; the (data derived)
smallest value for which all coefficients are zero.

lambda The sequence of penalty parameters for the regularization path.

penaltyfactor An array of size p1 × · · · × pd. Is multiplied with each element in lambda to
allow differential shrinkage on the coefficients.

penaltyfactoralpha

A q × 1 vector multiplied with each element in lambda to allow differential
shrinkage on the non-tensor coefficients.

reltolinner The convergence tolerance for the inner loop

reltolouter The convergence tolerance for the outer loop.

maxiter The maximum number of inner iterations allowed for each lambda value, when
summing over all outer iterations for said lambda.

steps The number of steps used in the multi-step adaptive lasso algorithm for non-
convex penalties. Automatically set to 1 when penalty = "lasso".

maxiterinner The maximum number of inner iterations allowed for each outer iteration.

maxiterouter The maximum number of outer iterations allowed for each lambda.

btinnermax Maximum number of backtracking steps allowed in each inner iteration. Default
is btinnermax = 100.

btoutermax Maximum number of backtracking steps allowed in each outer iteration. Default
is btoutermax = 100.

14 glamlassoS

iwls A string indicating whether to use the exact iwls weight matrix or use a kro-
necker structured approximation to it.

nu A number between 0 and 1 that controls the step size δ in the proximal algo-
rithm (inner loop) by scaling the upper bound L̂h on the Lipschitz constant Lh

(see Lund et al., 2017). For nu = 1 backtracking never occurs and the proximal
step size is always δ = 1/L̂h. For nu = 0 backtracking always occurs and the
proximal step size is initially δ = 1. For 0 < nu < 1 the proximal step size is ini-
tially δ = 1/(νL̂h) and backtracking is only employed if the objective function
does not decrease. A nu close to 0 gives large step sizes and presumably more
backtracking in the inner loop. The default is nu = 1 and the option is only used
if iwls = "exact".

Details

Given the setting from glamlasso we consider a model where the tensor design component is only
partially tensor structured as

X = [V1X
⊤
2 ⊗X⊤

1 , . . . , Vn3
X⊤

2 ⊗X⊤
1]⊤.

Here Xi is a ni × pi matrix for i = 1, 2 and Vi is a n1n2 ×n1n2 diagonal matrix for i = 1, . . . , n3.

Letting Y denote the n1 ×n2 ×n3 response array and V the n1 ×n2 ×n3 weight array containing
the diagonals of the Vis, the function glamlassoS solves the PMLE problem using Y, V,X1, X2

and the non-tensor component Z as input.

Value

An object with S3 Class "glamlasso".

spec A string indicating the model family and the penalty.

beta A p1 · · · pd× nlambda matrix containing the estimates of the parameters for the
tensor structured part of the model (beta) for each lambda-value.

alpha A q× nlambda matrix containing the estimates of the parameters for the non ten-
sor structured part of the model (alpha) for each lambda-value. If intercept =
TRUE the first row contains the intercept estimate for each lambda-value.

lambda A vector containing the sequence of penalty values used in the estimation pro-
cedure.

df The number of nonzero coefficients for each value of lambda.

dimcoef A vector giving the dimension of the model coefficient array β.

dimobs A vector giving the dimension of the observation (response) array Y.

Iter A list with 4 items: bt_iter_inner is total number of backtracking steps per-
formed in the inner loop, bt_enter_inner is the number of times the backtrack-
ing is initiated in the inner loop, bt_iter_outer is total number of backtracking
steps performed in the outer loop, and iter_mat is a nlambda× maxiterouter
matrix containing the number of inner iterations for each lambda value and each
outer iteration and iter is total number of iterations i.e. sum(Iter).

glamlassoS 15

Author(s)

Adam Lund

Maintainer: Adam Lund, <adam.lund@math.ku.dk>

References

Lund, A., M. Vincent, and N. R. Hansen (2017). Penalized estimation in large-scale generalized
linear array models. Journal of Computational and Graphical Statistics, 26, 3, 709-724. url =
https://doi.org/10.1080/10618600.2017.1279548.

Lund, A. and N. R. Hansen (2019). Sparse Network Estimation for Dynamical Spatio-temporal Ar-
ray Models. Journal of Multivariate Analysis, 174. url = https://doi.org/10.1016/j.jmva.2019.104532.

Examples

##size of example
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5;

##marginal design matrices (tensor components)
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X <- list(X1, X2)
V <- array(rnorm(n3 * n2 * n1), c(n1, n2, n3))

##gaussian example
Beta <- array(rnorm(p1 * p2) * rbinom(p1 * p2, 1, 0.1), c(p1 , p2))
Mu <- V * array(RH(X2, RH(X1, Beta)), c(n1, n2, n3))
Y <- array(rnorm(n1 * n2 * n3, Mu), c(n1, n2, n3))
system.time(fit <- glamlassoS(X, Y, V))

modelno <- length(fit$lambda)
plot(c(Beta), ylim = range(Beta, fit$coef[, modelno]), type = "h")
points(c(Beta))
lines(c(fit$coef[, modelno]), col = "red", type = "h")

###with non tensor design component Z
q <- 5
alpha <- matrix(rnorm(q)) * rbinom(q, 1, 0.5)
Z <- matrix(rnorm(n1 * n2 * n3 * q), n1 * n2 *n3, q)
Y <- array(rnorm(n1 * n2 * n3, Mu + array(Z %*% alpha, c(n1, n2, n3))), c(n1, n2, n3))
system.time(fit <- glamlassoS(X, Y, V , Z))

modelno <- length(fit$lambda)
oldmfrow <- par()$mfrow
par(mfrow = c(1, 2))
plot(c(Beta), type="h", ylim = range(Beta, fit$coef[, modelno]))
points(c(Beta))
lines(fit$coef[, modelno], col = "red", type = "h")
plot(c(alpha), type = "h", ylim = range(alpha, fit$alpha[, modelno]))
points(c(alpha))
lines(fit$alpha[, modelno], col = "red", type = "h")
par(mfrow = oldmfrow)

16 objective

################ poisson example
Beta <- matrix(rnorm(p1 * p2, 0, 0.1) * rbinom(p1 * p2, 1, 0.1), p1 , p2)
Mu <- V * array(RH(X2, RH(X1, Beta)), c(n1, n2, n3))
Y <- array(rpois(n1 * n2 * n3, exp(Mu)), dim = c(n1, n2, n3))
system.time(fit <- glamlassoS(X, Y, V, family = "poisson", nu = 0.1))

modelno <- length(fit$lambda)
plot(c(Beta), type = "h", ylim = range(Beta, fit$coef[, modelno]))
points(c(Beta))
lines(fit$coef[, modelno], col = "red", type = "h")

objective Compute objective values

Description

Computes the objective values of the penalized log-likelihood problem for the models implemented
in the package glamlasso.

Usage

objective(Y,
Weights,
X,
Beta,
lambda,
penalty.factor,
family,
penalty)

Arguments

Y The response values, an array of size n1 × · · · × nd.

Weights Observation weights, an array of size n1 × · · · × nd.

X A list containing the tensor components of the tensor design matrix, each of size
ni × pi.

Beta A coefficient matrix of size p1 · · · pd×nlambda.

lambda The sequence of penalty parameters for the regularization path.

penalty.factor An array of size p1 × · · · × pd. Is multiplied with each element in lambda to
allow differential shrinkage on the coefficients.

family A string specifying the model family (essentially the response distribution).

penalty A string specifying the penalty.

predict.glamlasso 17

Value

A vector of length length(lambda) containing the objective values for each lambda value.

Examples

Not run:
n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
Beta <- array(rnorm(p1 * p2 * p3) * rbinom(p1 * p2 * p3, 1, 0.1), c(p1 , p2, p3))
mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rnorm(n1 * n2 * n3, mu), dim = c(n1, n2, n3))
fit <- glamlasso(list(X1, X2, X3), Y, family = "gaussian", penalty = "lasso", iwls = "exact")
objfit <- objective(Y, NULL, list(X1, X2, X3), fit$coef, fit$lambda, NULL, fit$family)
plot(objfit, type = "l")

End(Not run)

predict.glamlasso Make Prediction From a glamlasso Object

Description

Given new covariate data this function computes the linear predictors based on the estimated model
coefficients in an object produced by the function glamlasso. Note that the data can be supplied
in two different formats: i) as a n′ × p matrix (p is the number of model coefficients and n′ is the
number of new data points) or ii) as a list of two or three matrices each of size n′i × pi, i = 1, 2, 3
(n′i is the number of new marginal data points in the ith dimension).

Usage

S3 method for class 'glamlasso'
predict(object, x = NULL, X = NULL, ...)

Arguments

object An object of Class glamlasso, produced with glamlasso.

x a matrix of size n′ × p with n′ is the number of new data points.

X A list containing the data matrices each of size n′i × pi, where n′i is the number
of new data points in the ith dimension.

... ignored

Value

A list of length nlambda containing the linear predictors for each model. If new covariate data is
supplied in one n′ × p matrix x each item is a vector of length n′. If the data is supplied as a list of
matrices each of size n′i × pi, each item is an array of size n′1 × · · · × n′d, with d ∈ {2, 3}.

18 print.glamlasso

Author(s)

Adam Lund

Examples

n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
Beta <- array(rnorm(p1 * p2 * p3) * rbinom(p1 * p2 * p3, 1, 0.1), c(p1 , p2, p3))
mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rnorm(n1 * n2 * n3, mu), dim = c(n1, n2, n3))
fit <- glamlasso(list(X1, X2, X3), Y)

##new data in matrix form
x <- matrix(rnorm(p1 * p2 * p3), nrow = 1)
predict(fit, x = x)[[100]]

##new data in tensor component form
X1 <- matrix(rnorm(p1), nrow = 1)
X2 <- matrix(rnorm(p2), nrow = 1)
X3 <- matrix(rnorm(p3), nrow = 1)
predict(fit, X = list(X1, X2, X3))[[100]]

print.glamlasso Print Function for objects of Class glamlasso

Description

This function will print some information about the glamlasso object.

Usage

S3 method for class 'glamlasso'
print(x, ...)

Arguments

x A glamlasso object

... ignored

Details

For the call that produced the object x a two-column data.frame with columns Df and lambda is
created. The Df column is the number of nonzero coefficients and lambda is the sequence of penalty
parameters.

RH 19

Value

Prints the data.frame described under Details.

Author(s)

Adam Lund

Examples

n1 <- 65; n2 <- 26; n3 <- 13; p1 <- 13; p2 <- 5; p3 <- 4
X1 <- matrix(rnorm(n1 * p1), n1, p1)
X2 <- matrix(rnorm(n2 * p2), n2, p2)
X3 <- matrix(rnorm(n3 * p3), n3, p3)
Beta <- array(rnorm(p1 * p2 * p3) * rbinom(p1 * p2 * p3, 1, 0.1), c(p1 , p2, p3))
mu <- RH(X3, RH(X2, RH(X1, Beta)))
Y <- array(rnorm(n1 * n2 * n3, mu), dim = c(n1, n2, n3))
fit <- glamlasso(list(X1, X2, X3), Y)
fit

RH The Rotated H-transform of a 3d Array by a Matrix

Description

This function is an implementation of the ρ-operator found in Currie et al 2006. It forms the basis
of the GLAM arithmetic.

Usage

RH(M, A)

Arguments

M a n× p1 matrix.

A a 3d array of size p1 × p2 × p3.

Details

For details see Currie et al 2006. Note that this particular implementation is not used in the opti-
mization routines underlying the glamlasso procedure.

Value

A 3d array of size p2 × p3 × n.

Author(s)

Adam Lund

20 RH

References

Currie, I. D., M. Durban, and P. H. C. Eilers (2006). Generalized linear array models with ap-
plications to multidimensional smoothing. Journal of the Royal Statistical Society. Series B. 68,
259-280.

Index

∗ package
glamlasso, 2
glamlassoS, 12

glamlasso, 2, 9, 14
glamlasso_objective (objective), 16
glamlasso_RH (RH), 19
glamlassoRR, 7
glamlassoS, 12

H (RH), 19

objective, 16

predict.glamlasso, 17
print.glamlasso, 18

RH, 19
Rotate (RH), 19

21

	glamlasso
	glamlassoRR
	glamlassoS
	objective
	predict.glamlasso
	print.glamlasso
	RH
	Index

